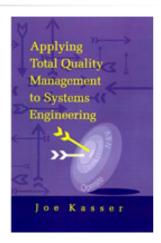
A systems thinking approach for managing complex systems Session 6 of 6 Managing complexity

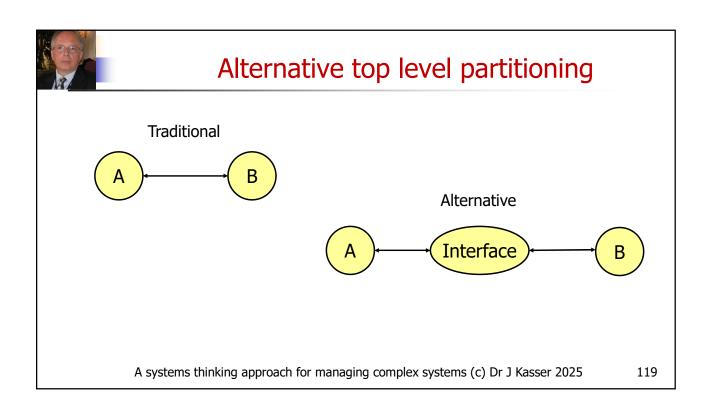
Version 1.2.2


A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

116

Topics

- Purpose
- Thinking and systems thinking
- Systems and system of interest
- Principle of hierarchies
- Emergence and emergent properties
- Problems and solutions
- The problem formulation template
- Complexity
- Interface partitioning
- Classification and types of problems


A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

Optimize the interfaces

- Iterative step with aggregation
- Minimize <u>interaction between subsystems</u> at interfaces
 - Ideally a single interface between entities
 - Coupling and cohesion
- Perform grouping in N² accordingly

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

Apollo program-1

- Optimized to transfer men and scientific equipment (Apollo Lunar Surface Experiments Packages (ALSEP)) between the earth and the moon
 - in the most efficient manner within the constraints of the then available technology.
- From the Structural perspective
 - The system contains three top-level physical subsystems
 - 1. Terrestrial
 - 2. Lunar
 - 3. Interface system between the terrestrial and lunar subsystems

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

120

Apollo program-2

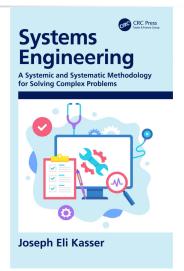
1. The terrestrial subsystem

- The NASA manned spacecraft centers, headquarters, launch and landing subsystems, etc.
- 2. The lunar subsystem
 - Empty before the first landing
 - Contained an increasing number of Apollo Lunar Surface Experiments Packages (ALSEP), the set of scientific instruments deployed by the astronauts at each of the landing sites
 - Two astronauts while they were on the lunar surface
- 3. The interface subsystem
 - The spacecraft
 - The astronauts (three while in transit, one when in lunar orbit)
 - The NASA Communications Network (NASCOM) communications subsystem

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

Tools, techniques and templates

	Tools, techniques and templates	Slide
1	Compliance Matrix	5
2	System of Interest (SOI)	13-36
3	Holistic Thinking Perspectives	39-43
4	Active Brainstorming	47-52
5	Principle of Hierarchies	57-73
6	Continuum of Solutions	86-87
7	Problem Formulation Template	81-95
8	Hitchins-Kasser-Massie-Mabelo Framework (HKM²F)	101
9	Subjective and Objective Complexity	105-111
10	Interface partitioning	118-121
11	Mission and Support Systems Architecture	113
12	Three Structures of a Problem (well-, ill- and wicked)	
13	Iterative Problem Solving	


A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

122

Topics

- Purpose
- Thinking and systems thinking
- Systems and system of interest
- Principle of hierarchies
- Emergence and emergent properties
- Problems and solutions
- The problem formulation template
- Complexity
- Interface partitioning
- Classification and types of problems

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

Classification of problems

- 1. Level of difficulty of the problem
 - Discussed earlier (subjective complexity)
- 2. Research and intervention problems
- 3. Structure of the problem
- 4. Complexity of the problem
- 5. Others

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

124

Research problems

- 1. The undesirable situation is either
 - The inability to explain observations of phenomena
 - The lack of (need for) some particular knowledge
- **2. Assumptions** are situation dependent
- **3. The Feasible Conceptual Future Desirable Situation (FCFDS)** is the knowledge often in the form of the supported hypothesis
- **4. The problem** is how to gain the needed knowledge
- **5. The solution** is the FCFDS
- The problem solving process is commonly known as the Scientific Method (SM), and works <u>forwards</u>
 - From the current situation
 - To the FCFDS in which the knowledge has been acquired
 - You don't know where you are going until you get there and/or what you will find on the journey

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

Intervention problems

- The undesirable situation is something needs to be changed over a period of time into a FCFDS
- **2. Assumptions** are situation dependent
- **3. The FCFDS** is the undesirable situation without the undesirability and usually with additional desirability
- **4. The problem** is how to realize a smooth and timely transition from the current situation to the FCFDS
- **5. The solution** is the FCFDS
- **6.** The problem solving process is created by <u>working backwards</u> to the current problematic/undesirable situation to document:
 - 1. the FCFDS, and
 - 2. the realization plans documented as a <u>forward process</u> starting from the current situation and ending with the deployment of the FCFDS

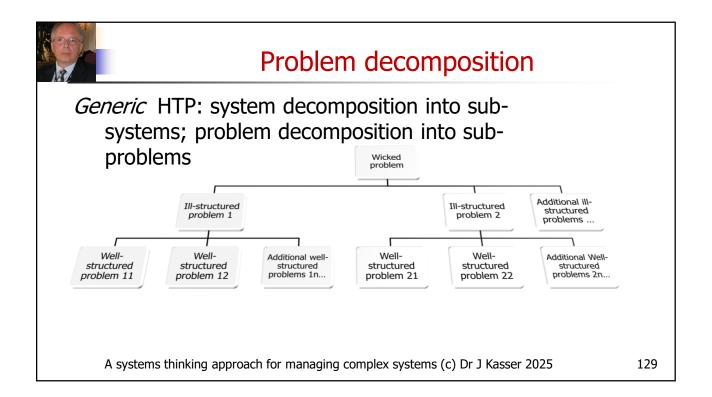
A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

Structure of the problem

- 1. Well-structured
 - The existing undesired situation and the FCFDS are clearly identified
 - May have a single solution or sometimes more than one acceptable solution
- 2. Ill-structured
 - Either or both the existing undesired situation and the FCFDS are unclear
- Wicked
 - Extremely ill-structured problems/situations
 - Sometime known as messy problems

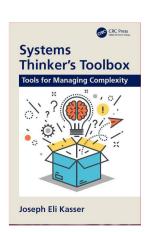
A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

127


128

Problem and sub-problems

- Ill-structured problems cannot be solved (Simon, 1973)
- So how to deal with them
- Ill-structured and wicked problems have to be converted to a (set of) well-structured problem(s)
 - Research problems
- (set of) well-structured problem(s) are solved via iterations of the problem-solving loop
 - Prioritize and take action
 - Intervention problems


A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

Tools, techniques and templates

	Tools, techniques and templates	Slide
1	Compliance Matrix	5
2	System of Interest (SOI)	13-36
3	Holistic Thinking Perspectives	39-43
4	Active Brainstorming	47-52
5	Principle of Hierarchies	57-73
6	Continuum of Solutions	86-87
7	Problem Formulation Template	81-95
8	Hitchins-Kasser-Massie-Mabelo Framework (HKM²F)	101
9	Subjective and Objective Complexity	105-111
10	Interface partitioning	118-121
11	Mission and Support Systems Architecture	113
12	Three Structures of a Problem (well-, ill- and wicked)	127-129
13	Iterative Problem Solving	

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

130

Confusing complexity with 'ill -structured problems"

Combined complexity

- Objective Complexity
 - "A complex system usually consists of a large number of members, elements or agents, which interact with one another and with the environment", ElMaraghy et al., 2012
- Subjective complexity
 - Difficult to understand

Ill-structured problems

- Sometimes called 'ill-defined' problems or 'messy' problems are problems where either or both the existing undesirable situation and the FCFDS are unclear (Jonassen, 1997)
 - The initial feeling that something is wrong and needs to be changed
 - Where the FCFDS is unclear
 - Where different stakeholders perceive different causes of the situation and different ways of dealing with the causes

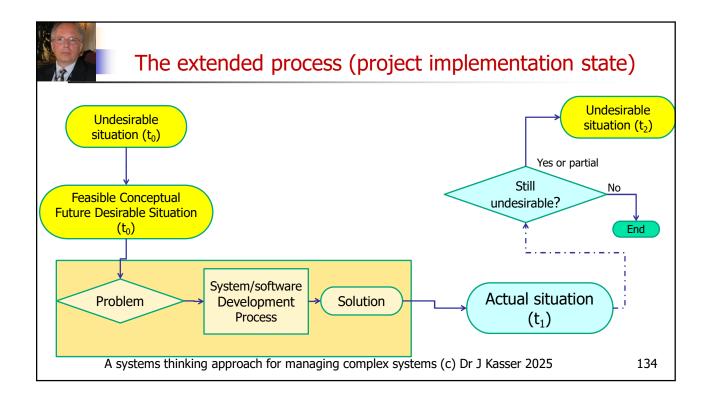
A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

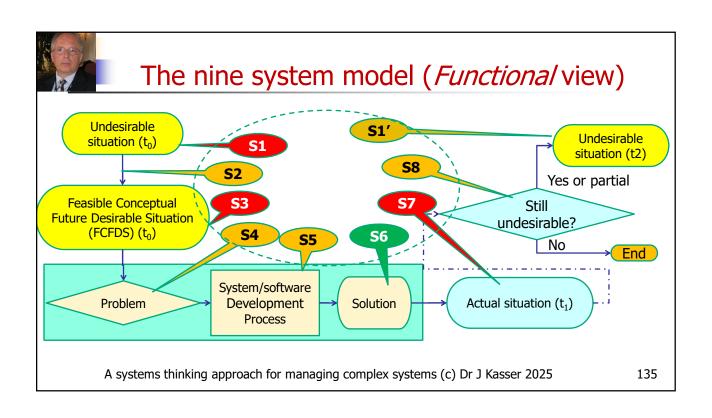
Tackling a complex situation

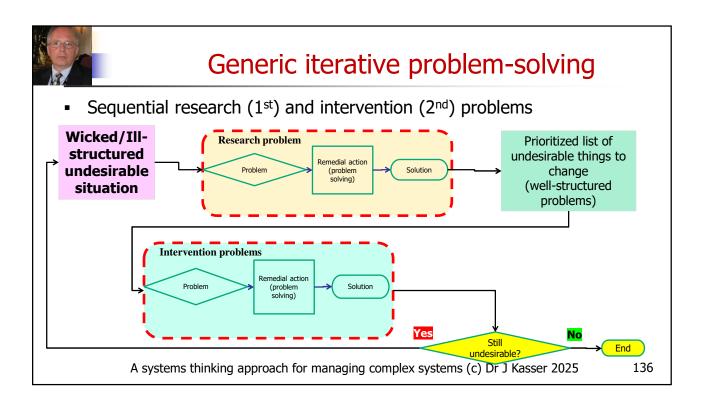
- Gain an understanding of the situation
- Determine the structure of the problem
- Proceed accordingly
 - 1. Convert the ill-structured and wicked problems to a set of well-structured problems
 - 2. Remedy the well-structured problem
 - 3. Decide which one to tackle
 - 4. Go back to step 1

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

132




The three domains of problem-solving


- 1. Problem
 - Unacceptable road traffic congestion
- 2. Solution (selected)
 - Subway
- 3. Implementation
 - Tunnel boring
 - Surface traffic management

- 1. Problem
 - Need for specific software application in an application domain
- 2. Solution
 - Specific software for an application domain
 - Target platforms
- 3. Implementation
 - Software development environment
 - Hardware and software

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

	Tools, technique	es and	templates		
	Tools, techniques and templates	Slide			
1	Compliance Matrix	5	CRC Press		
2	System of Interest (SOI)	13-36	Systems		
3	Holistic Thinking Perspectives	39-43	Thinker's Toolbox		
4	Active Brainstorming	47-52	Tools for Managing Complexity		
5	Principle of Hierarchies	57-73	\\\? @_!		
6	Continuum of Solutions	86-87); ? \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		
7	Problem Formulation Template	81-95			
8	Hitchins-Kasser-Massie-Mabelo Framework (HKM ² F)	101			
9	Subjective and Objective Complexity	105-111	is a		
10	Interface partitioning	118-121	Joseph Eli Kasser		
11	Mission and Support Systems Architecture	113	лозерп сп каззег		
12	Three Structures of a Problem (well-, ill- and wicked)	127-129			
13	Iterative Problem Solving	132-136			
A systems thinking approach for managing complex systems (c) Dr J Kasser 2025					

Bonus tools, techniques and templates

	Tools, techniques and templates	Slide
14	Miller's rule	14
15	Working back from the answer/solution	91,93,94
16	Need for two solutions	87
17	The three domains of problem-solving	133
18	Nine systems model	135
19	Iterative problem solving	134-136

A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

Exercise 6 Managing complexity

- 1. In exercise 1 you stated an assumed problem with INCOSE
- Think about
 - 1. The exercises you did in this workshop
 - 2. The information you identified
 - 3. Some of the information you still need to create an acceptable solution and where you would obtain that information
 - 4. All assumptions
 - 5. The sequence of events you would go through to realize that solution ("what" not "how")
- 3. Prepare presentation containing
 - 1. Your assumed problem reformulated according to the Problem Formulation Template
 - 2. The sequence of events you would go through to realize that solution ("what" not "how")
 - 3. Compliance matrix for exercise
 - 4. Lessons learned in this lesson
 - 5. The knowledge you gained in this workshop (summary)
 - 6. A copy of this slide and the version number of the lesson
- 4. Save file as yourlastname-firstname-6.pptx (e.g., mouse-michael-6.pptx)
- Email file to Beyondsystemsthinking@yahoo.com
 A systems thinking approach for managing complex systems (c) Dr J Kasser 2025

139